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Review
Response surface methodology

• Reduce experimentation cost by specializing


• Reduced cost means fewer measurements


• RSM specializes to continuous parameters


• RSM can optimize 1-5 parameters



Review
Predictor-in-controller

• Predictor: Estimates a target, ex., P{click} on an ad


• Controller: Uses predictions to make a decision / choose an action


• ex., “Of the 1000 ads available, show the one with the highest P{click}”



Predictors in controllers

Controller Prediction Action Reward

Ad server P{click} Show ad with

highest P{click} CPC revenue

Fraud detector P{fraudulent}
Hold charges with high


P{fraudulent} until

customer gives OK

Avoid losing money

to fraud

Trading strategy E[return] Buy when E[return] > 0,

sell when E[return] < 0 Revenue (“PnL”)

Social media feed P{like} Show posts with

highest P{like}

Users spend more time

on feed

Industrial engineered systems



Contextual bandits
Specialization

• Can optimize many — millions — of parameters by specializing


• …to short-term business metrics, aka rewards


• Ex: CTR, likes, fraudulent transaction


• But not: DAU, daily pnl, purchase following ad, time spent per day


• …and predictor-in-controller designs


• The predictive model contains all of the CB-tunable parameters


• Each reward corresponds to a single prediction



Production logs

• Every time you show an ad, log


• features of the ad


• features of the user


• whether the user clicked


• data = , where


•  = all of the features


•  = 1 if clicked, else 0; “click indicator”

{(xi, yi)}

xi

yi



Typical design
Estimate P{click}

• Fit an SL model to the data, like


• logistic regression


• neural network


• Model may have many parameters


• Model estimates P{click} = click-through-rate = CTR


• More specifically: P{click | ad & user features} = CTR for ad



Typical design
Periodic refitting

• Fit model every day


• Use data from trailing month’s logs


• Production uses latest, refit model


• Refitting tracks changes in system over time



Problem: Missing counterfactuals

• P{click | Ad1} = .02, P{click | Ad2} = .01


• Controller chose to show Ad1


• Features and click indicator for Ad1 show up log


• No data collected for Ad2


• BUT: The model is wrong about P{click | Ad2}.


• The CTR for Ad2 is actually much higher, .03.

Typical design



• If we don’t show Ad2, then


• We won’t log any data for Ad2


• The model will fit from the same old data


• The model will still estimate P{click | Ad2} = .02


• Why is the model wrong about Ad2?


• Small-sample bias


• All models are biased. Only better data can fix that.

Typical design
Problem: Missing counterfactuals



• counterfactual: What would have happened if we had done something else?


• I.e., What would have happened if we had shown Ad2 instead of Ad1?


• Without counterfactual data, 
the model can’t make a better 
prediction about Ad2.


• Instead, endless, feedback loop

Typical design
Problem: Missing counterfactuals



Solution: Exploration
Collect the counterfactuals

• Each time you show an ad:


• exploit: w/ probability 0.90, use the model, as before


• explore: w/ probability 0.10, show an ad at random


• Every day, exploration will collect some counterfactuals— ads that wouldn’t 
have been shown by the model


• The counterfactuals show up in the logs, thus in the data


• This debiases the data which debiases the model

Biased

Unbiased



• Think of each ad as an “arm”, then this is epsilon-greedy


• Breaks the feedback loop


• You’re running an experiment 
to optimize the parameters of 
the predictor’s model

Solution: Exploration
Collect the counterfactuals



Contextual bandit
Generalization of multi-armed bandit

• Each ad is an arm


• MAB:  = avg. CTR for ad = estimated CTR


• CB: P{click | features of ad and user} = estimated CTR


• “features of ad and user” called the context,


• hence the name contextual bandit


• Set “features = 1”, i.e., just fit an intercept, then CB == MAB

μad



Policy classes

Naive: Show ad with best CTR so far MAB: Explore to get unbiased data

P-in-C: Predict CTR from ad id and other 
features CB: Explore & predict



Solution 2: Explore models

• Model weights are found by fitting (regression)


• Model weights have errors:


• ex., linear regression yields betas and standard errors of betas


• Alas, SGD yields NN weights, but no errors


• Given a fitting routine that returns weights, ex., Python function fit(data)  
how could you find the standard errors of the weights?



Errors in weights

• Bootstrap!


• Take B bootstrap samples of the data


• Run fit() on each bootstrap sample to find B weight vectors


• Then std() of the B weight vectors is the SE of the weight vector


• Works for any model type, linear regression, logistic regression, NN, random 
forest, SVM, etc.

Solution 2: Explore models



Thompson sampling

• Use bootstrap for Thompson sampling


• Each time you need to show an ad:


• Take 1 bootstrap sample of data


• Run a fit to find 1 weight vector


• Calculate P{click} using that weight vector


• Each weight vector defines a different model


• P{using a model} = P{that model is best}


• “best”: weight vector is closest to the “true” unobservable weight vector

Solution 2: Explore models

Analogous to: “Run arm  if ”k μ̃k = max{μ̃k′ 
}



• fit() takes to long to run; can’t run for every ad


• Instead, offline:


• Generate B bootstrap samples (ex., B=10)


• Fit B models; an ensemble of models


• Online, for every ad:


• Choose 1 model from ensemble, randomly


• Use that model to choose which ad to show

Solution 2: Explore models
Thompson sampling, in practice



Thompson sampling

• Randomizes over / explores models instead of arms


• Optimal regret, unlike epsilon-greedy


• No meta-parameter to tune, unlike epsilon-greedy


• epsilon-greedy has same decay parameter, c, when used in CB



Short-term business metrics only

• If CB can optimize millions of parameters, why bother with, ex., RSM, which 
can optimize 2 or Bayesian optimization, which can optimize, maybe 10?


• Catch: CB only works with short-term business metrics (rewards)


• Ex: CTR, likes, fraudulent transaction


• But not: DAU, daily pnl, purchase following ad, time spent per day


• CB needs (features, target) pairings and many samples in data set


• Ex: DAU is 1 number/day, even though many, many ads shown



Summary

• Perspective 1: CBs fix feedback loops that bias predictor-in-controller 
designs by adding exploration


• Perspective 2: CBs improve MAB decisions by conditioning on context, i.e. 
adding a prediction model


• Contextual bandits use exploration to collect unbiased data


• Thompson sampling explores models (weights), epsilon-greedy explores arms


• Contextual bandits enable optimization of many parameters,  
but only for short-term business metrics


